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Free convection from a flat plate 

By H. S .  TAKHAR 
University of Manchester 

(Received 27 February 1968) 

A numerical solution is presented for the development of free convection from a 
semi-infinite vertical flat plate which is uniformly heated up to a length I from 
the base and insulated for the rest of its length. At great heights above the heated 
part of the plate, the velocity and temperature distributions behave as if the 
heat were put in as a line source of heat a t  the base of the plate. Matching of the 
solutions for the heated and the insulated parts of the plate, by keeping the 
fluxes of heat and momentum continuous, determines the position of the effec- 
tive origin of the similarity solution for the insulated plate in terms of the length, 
I ,  of the heated part of the plate. Graphs of the dimensionless velocity, tempera- 
ture, heat flux and axial length parameters are given for different values of the 
Prandtl number. 

1. Introduction 
Fluid motions brought about by the action of body forces (e.g. gravitational, 

centrifugal, Coriolis or electromagnetic forces) are usually termed as free con- 
vection flows as opposed to the forced convection flows in which the fluid flow is 
maintained mechanically (e.g. by a pressure drop or an agitator). Problems in 
free convection have mainly been solved by two methods: (a)  a similarity solution 
of the partial differential equations governing the flow is sought, which reduces 
to ordinary differential equations in the similarity variable; ( b )  boundary-layer 
equations are satisfied on the average by replacing them by their integrals across 
the boundary layer. Behaviour of the equations at  the surface is also utilised in 
the solution. 

Body forces are in equilibrium with the hydrostatic pressure when there is no 
temperature difference between the plate and its environment and no flow will 
develop in the steady state. If the plate is heated the resultant rise in temperature 
in the fluid produces a defect of body force because of decreased density. The fluid 
nearer to the plate is therefore subject to a buoyancy force which is balanced by 
the viscous forces and the inertia of the moving fluid. 

The earliest analysis and experiments on free convection flow under gravity 
about an isothermal flat plate was done by Schmidt & Beckman (1930). Ostrach 
(1953) reformulated the problem considering a viscous and conducting fluid and 
developing asymptotic forms of the basic equations. For non-isothermal sur- 
faces Sparrow & Gregg (1958) have given a solution of the boundary-layer 
equations of free convection from a vertical flat plate for two families of surface 
temperature for different values of the Prandtl number. 
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Takhar (1967) obtained a numerical soIution for the development of laminar 
free convection near a vertical insulated flat plate which is heated at  the base 
by a line source of heat. The condition of insulation effectively reduces the prob- 
lem to that of free convection near a flat plate whose temperature varied as 
(x)-t where x is the distance from the leading edge. A Pohlhausen type of solution 
suggests the form of the similarity parameters which are used in solving the 
boundary-layer equations numerically for different values of the Prandtl 
number. Takhar also studied the problem of free convection produced by heating 
a length, 1, of the semi-infinite vertical flat plate and insulating the rest of its 
length. At a great height above the heated part the velocity and temperature 
distributions behave as if the heat were put in as a line source of heat near the 
base of the plate. A Pohlhausen solution given for this case determines the effec- 
tive origin of the similarity solution in terms of the length, 1, of the uniformly 
heated part of the plate. 

The present paper provides a numerical solution to the problem of free con- 
vection from a vertical flat plate which is partly uniformly heated and partly 
insulated. This is done by matching Ostrach’s (1953) numerical solution for a 
uniformly heated, vertical flat plate and Takhar’s (1967) solution for an insulated 
flat plate (with displaced origin) by keeping the fluxes of heat and momentum 
continuous. Solutions are presented for parametric values of the Prandtl number 
for the dimensionless velocity, temperature, heat flux and axial length parameters 
in the form of graphs. 

2. Governing equations 
Consider a two-dimensional frame of reference in which the origin is at the 

lower edge of the plate, x-axis along the plate and y-axis normal to the plate with 
the associated velocity components u and v in these directions. Neglect (i) any 
variations in the kinematic viscosity v and the thermometric conductivity K ,  

(ii) viscous dissipation and the work done against the gravity field. By assuming 
the Boussinesq approximation, whereby we neglect the variations in density 
except in the buoyancy term, and absorbing the gravity in the hydrostatic pres- 
sure, the governing equations expressing the conservation of mass, momentum 
and heat energy for a steady laminar flow in the boundary layer formed along the 
flat plate reduce to a t 6  au -+- = 0, ax ay 

au au a Z u  

ax ay aY2 
U -  + v - = gP(T - T,) + v-, 

with the associated boundary conditions 

T = F, 

aTiay = o 

u = o  
v = o  

iiT/ay = 0 for x > 1 
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where g is the acceleration due to gravity, /3 the coefficient of cubical expansion, 
T the temperature of the air, T, the temperature at  infinity and T, the tempera- 
ture at  the wall. The continuity equation (1) defines a stream function II. given by 

u = a$py ;  v = -aglax. ( 5 )  

3. Uniformly heated plate 
For the uniformly heated plate Ostrach (1953) defined similarity variables of 

the form 

and 
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FIGURE 1. Dimensionless velocity dis- 
tributions for various Prandtl numbers 
for the uniformly heated plate. 

7 = [ tGr] t  x y/z 

FIGURE 2. Dimensionless temperature 
distributions for various Prandtl num- 
bers for the uniformly heated plate. 

Substitution of these similarity parameters in the governing equations (l), (2), 
(3) leads to the ordinary differential equations in the similarity variable 7; 

where 

Fif + 3 F F  - 2P4+ H = 0, 

H“ + 3Pr PH’ = 0, 

Pr = V / K .  

The boundary conditions now become 

F ( 0 )  = 0 = P(O), 

F’(co) = 0 = H(co). 

These equatious are solved numerically for different values of the Prandtl 
number. Results for the development of the non-dimensional velocity and tem- 
perature profiles are given by figures 1 and 2. 

6-2 
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The characteristic non-dimensional number of the problem may be defined 
through the constant heat flux integral 

Results for the development of the non-dimensional heat-flux parameter for 
different values of the Prandtl number are given in figure 3. 

Pr 

FIGURE 3. Dimensionless heat flux parameter as a function of the Prandtl number for the 
uniformly heated plate. 

4. Insulated plate 
For the insulated plate a similarity solution was obtained by Takhar (1967) by 

using similarity variables of the form (if the origin is now assumed displaced by a 
distance, a, from the leading edge) 

$* = 4v[iGr*]i f (r*) .  (18) 

Substitution of these similarity variables into the governing equations ( I ) ,  ( 2 ) ,  
(3) leads to the ordinary differential equations in the similarity variable 7”; 

(19) 

(20) 

f”’ - + f ’ 2  + SZ-f-ff” + 6 = 0, 

8“ = ( - p.) ( f ’ O  +f8’). 
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The last equation (20) integrates to 

O ‘ =  (-- l52Pr) fd, (21) 

since S(c0) = 0. This shows that S’(0) = 0, which is the condition that there is no 
heat transfer. 

The boundary conditions on the problems now reduce to 
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The characteristic non-dimensional number of the problem may be defined 
through the constant heat flux integral, 

roo 

Results for the development of the non-dimensional heat flux parameter for 
different values of the Prandtl number are given in figure (6). 

5. Matching 
The constants a and 1 which respectively represent the displacement of the 

origin in Takhar’s solution and the length of the heated part of the plate can be 
found by matching the two solutions a t  x = 1 where 

/ u2dy and IOm u( T - T,) dy 
0 
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are both continuous. From Ostrach’s solution 
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FIGURE 6. Dimensionless heat flux parameter as a function of the Prandtl number for the 
insulated plate. 

From Takhar’s solution (with displaced origin) 

S O *  x - a  (26) 
u2dy = 16[iGr*]*-/ v2 - 

f’2dy*, 

/ o w u ( T - T , ) d y  = 4v[aGr*]~(T,,-Tm) (27) 

Equating (24) and (26) at x = 1 we get 
03 

ffZdy*. 
32-1 0 

16[aGr]$=,-i v2/r P 2 d y  = 16[$Gr*];=, 

This leads to  

Equating ( 2 5 )  and (27) at x = 1 we get 

4v(;ar)$=, (Tw-Tm) F’Hdv = 4 ~ ( 5 7 ~ * ) $ = 2  (Tw-T,) 



Free convection from a $at plate 

This leads to 

From (28) and (29) we get, 

0.012 

0.010 
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Results for the non-dimensional length parameter, (1  - u/Z), €or various values of 

1 
the Prandtl 

-~ 

number are given in figure 7. 
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FIGURE 7. Dimensionless axial length parameter (1 -a/Z)) as a function of the Prandtl 
number. 

6. Conclusions 
Distributions of velocity, temperature and heat flux are shown in figures 1-3 

for the case of a uniformly heated vertical flat plate and in figures 4-6 for the 
insulated vertical flat plate. For Pr < 1 the buoyancy forces are dominant over 
the viscous forces and relatively higher velocities are observed for decreasing 
values of the Prandtl number. However, for Pr > 1 when viscous forces are 
dominant over the buoyancy forces, relatively lower velocities are observed for 
increasing values of the Prandtl number. Also, for the insulated flat plate higher 
velocities are observed than the uniformly heated plate for the corresponding 
Prandtl numbers. The value of the non-dimensional temperature parameters H 
and 8 is equal to 1 at the wall and it gradually tapers off to zero with increasing 
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values of ? and ?* respectively, but only more slowly (if for the insulated than the 
uniformly heated plate and (ii) for the lower (than 1) values of the Prandtl 
number. 

Velocity accelerates more rapidly and the temperature decays more slowly 
(for Pr < 1)  for the insulated flat plate than in the case of the uniformly heated 
plate. This is also in accord with the non-dimensional parameter K*/($Gr*)* for 
the insulated plate developing more rapidly than the corresponding parameter 

Pr (1 -ail) K l ( m 9  K*/($GP*)% 

0.5 0.0125 2.3520 5.2144 
0.733 0-0055 2.7072 6.3828 
1 0.0023 3.0248 7.1540 
2 0.0004 3.8216 2.5800 
5 0 5.0880 13.5208 

10 0 6.2368 17.0784 

TABLE 1. Values of the non-dimensional ratios for various Prandtl numbers. 

K/($Gr)% for the uniformly heated plate. Matching of these two solutions gives 
an effective displacement of the similarity solution in the vertical direction. For 
large Prandtl numbers the effective origin is close to the point x = I but if the 
Prandtl number is small enough the effective origin may be below the leading 
edge of the plate. Figure 7 shows the distribution of the dimensionless length 
parameter (1 - a/Z) as a function of the Prandtl number. The value of this para- 
meter is very nearly equal to zero for Pr = 0.5 and tends to the limit zero for 
Pr 2 5 indicating that the effective origin is nearly all the way up the heated part 
of the plate. 

7. Numerical integration 
As no analytical solutions can be easily found for the sets of equations (10) and 

(11) and (19) and (20) these were solved numerically under the boundary con- 
ditions (13) and (22) respectively by using a marching solution from ? = 0 and 
y* = 0. Before we can use the Kutta-Merson techniques of solution of simul- 
taneous ordinary differential equations we have to know F”(0);  H’(0) andf”(0) in 
the two cases respectively. This was achieved by using the ‘Haselgrove 2-point 
Boundary Value Program’ which is stored on a magnetic tape in the Atlas 
Computer a t  the Manchester University. The Haselgrove Program integrates 
the given system of differential equations from the origin outwards and from the 
infinity inwards. These solutions are matched at an intermediate point which 
must be guessed. The fitting is done by adjusting the guesses for the unknown 
boundary values so that the differences in the functions obtained by the forward 
and backward integrations are as small as possible. This process of guessing and 
fitting was repeated for different values of the Prandtl number to get the starting 
values of the functions H”(O), H’(0) and f”(0). After this the Kutta-Merson 
Program is used to integrate the given systems of differential equations outward 
from y = 0 and q* = 0 respectively. 
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